Substitution and Elimination Learning Objectives

Here are the skills you should have for most chapters on Substitution & Elimination:

- 1) Substitution and Elimination Reactions (S_N2, E2, S_N1, E1)
 - A. Know the name, features, requirements, and limitations of each reaction
 - B. Understand the information that kinetics (i.e. rate law) can provide about each reaction
 - C. Be able to provide a mechanism for each reaction, including variations on each theme (e.g. intramolecular rxns)
 - D. Understand the "players" involved in each reaction, what factors influence the effectiveness of each, and how each player affects the type of reaction that occurs:
 - i. leaving group
 - ii. substrate (methyl, 1°, 2°, 3° and other structural influences like β -branching)
 - iii.reagent (nucleophilicity and basicity)
 - iv.solvent
 - E. Be able to determine which reaction will occur. You might use the following table as a guide for deciding which reaction will occur...

			Nucleophile or	Substrate
	Leaving Group?	Solvent?	Base?	1°, 2°, or 3° carbon?
S _N 2			Requires a good	1° or 2° only.
	All require good	Favored in polar	nucleophile	Never with 3° or cmpd
	leaving groups. If	aprotic solvents	(preferably one	w/ β branching.
	the lvg grp is	(acetone, DMF,	w/ neg. charge)	
E2	OH, OR, SH, SR,	DMSO, HMPT)		2° or 3° . With 2°
	NH ₂ , NHR, or	but possible in	Needs a strong	carbons, E2 competes
	NR ₂ (all bad lvg	all solvents.	base.	w/ $S_N 2$ but can be made
	grps), you can			favorable w/ Δ .
	make them good			
S _N 1	by protonating		Occurs w/ poor	3° or stabilized
	them with a strong		and good	carbocations. 2° is
	acid. Also, if the		nucleophiles.	sometimes possible.
	leaving group is	Require polar		Favored at lower temps.
E1	OH, you can make	protic solvents.		3° or stabilized
	it good w/ TsCl		Favored w/	carbocations. 2° is
	(we'll cover TsCl		weak bases.	sometimes possible.
	in ch 9).			Favored at higher
				temps.

- F. Be able to predict the stereochemical (R/S, E/Z, number of stereoisomers formed) outcomes of each reaction.
- 2) Be able to propose reaction conditions that turn a hydroxyl group (a poor leaving group) into a good leaving group.
- 3) Be able to use elimination reactions in tandem to synthesize alkynes
- 4) Be able to use substitution & elimination reactions, along with reactions from previous chapters, in synthesis problems.