Substitution and Elimination Learning Objectives

Here are the skills you should have for most chapters on alcohols, ethers, and epoxides:

1) Know the reactions from previous chapters for synthesizing alcohols and		Class and Example	Typical pK _a
e	 approxides: by hydration of alkenes (via H⁺/H₂O or oxymercuration-demercuration) by hydroboration of alkenes by halohydrin formation from alkenes= 	Hydrogen halide H-1, H-Br, H-Cl Sulfuric acid Q H-O-S-O-H	-11, -9, -8 -3 (2nd 1 00)
	 4) substitution rxns using NaOR or NaOH as nucleophile (note: these reactions may compete with elimination and thus give lower yields of the desired alcohol or ether product) 5) epoxidation of alkenes using RCO₃H 	Hydronium H ₃ O ⁺ Sulfonic acid	-1.7
2)	Be able to compare the physical properties (b.p., m.p., density) of alcohols and ethers with that of other functional groups.	Carboxylic acid	0-1
3)	Be able to compare the acidity of alcohols with other acids, both organic and inorganic (see Table)	О СН ₃ СО- Н	3-5
4)	Understand the processes of oxidation and reduction as they apply to organic compounds & reactions.		4-5
5)	Understand the reactivity (i.e. the lack thereof) of ethers.	Hydrogen cyanide HCN	9.2
6)	Understand the utility of epoxides and be able to recognize when one is needed in a synthesis.	Thiol CH ₃ CH ₂ S- H	8-12
7)	Recognize when a carbon atom of an organic compound can act as an electrophile.	Phenol	9-10
8)	Recognize when a carbon atom of an organic compound can act as a nucleophile.	β-Diketone O Η O CH ₃ -C-CH-CCH ₃	10
9)	Understand that alcohols are key intermediates and starting materials in many important syntheses.	Alkylammonium ion (CH ₃ CH ₂) ₃ N- H	10-12
	 a. They can be made regioselectively b. They can be made stereoselectively c. They are the products of many C-C bond forming reactions 	<mark>β-ketoester</mark> Ο Η Ο CH ₃ -C-CH-COCH ₂ CH ₃	11
	d. They can be protected	Water HO- H	15.7
	epoxides ketones	Alcohol CH ₃ CH ₂ O- H	16-19
	ethers OR ethers	α -Hydrogen of an aldehyde or ketone	
	haloalkanes X	о СН ₃ ССН ₂ - Н	18-20
	OH Individualles	α -Hydrogen of an ester	
		СН ₃ СН ₂ ОССН ₂ - Н	23-25
	ethers OR OH RO ethers epoxides	Terminal Alkyne R−C≡C− H	25
	esters OR	Amine N-H	35-38
	carboxylic acids	Alkene	45
	aldehydes O H O aldehydes	Alkane R -H	>50