Reactions at the α-Carbon of Carbonyl Compounds (Enolate Ions) Learning Objectives

As we study this chapter, you should...

1) Know that α -protons of ketones, aldehydes and esters have enhanced acidity.

Protons at the α -position exhibit enhanced acidity because their conjugate bases (known as enolates) are stabilized by resonance.

2) Understand how an enolate, because it possesses a negatively charged carbon, can act as a nucleophile.

3) Be able to generate enolates quantitatively (using a strong base) or under equilibrium (using a weak base), and know when to use each scenario.

4) Understand that α,β -unsaturated carbonyls can be attacked at the carbonyl (1,2-addition or direct addition) or at the β carbon of the alkene (1,4 addition or conjugate addition).

	Hard Nucleophiles Undergo 1,2-Addition	Soft Nucleophiles Undergo 1,2-Addition
(1,2 addition) (1,4 addition)	R–MgX	K+ CN−
:0: :0: :0:	R–Li	R ₂ CuLi
	R-==: Na⁺	** enolates **
$\begin{bmatrix} \mathbf{R} \\ (\mathbf{H}) \end{bmatrix} \longleftrightarrow \begin{bmatrix} \mathbf{R}^{+} \\ (\mathbf{H}) \end{bmatrix} \longleftrightarrow \begin{bmatrix} \mathbf{R}^{+} \\ (\mathbf{H}) \end{bmatrix}$		oxygen nucleophiles
		sulfur nucleophiles
Nuc —		nitrogen nucleophiles